
The genome of the arapaima (Arapaima gigas) provides insights into gigantism, 1 

fast growth and chromosomal sex determination system 2 
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                      Figure S1. The flow chart showing the process of genome assembly and annotation.



                   Figure S2. Statistical analysis of contraction and expansion of gene clusters.
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Figure S3. Interspersed repeat landscape for male-specific scaffolds of arapaima. The interspersed repeat landscape, revealing the 
copy-divergence analysis of TE classes, based on Kimura distances. Percentages of TEs in genomes (Y-axis) are clustered based on 
their Kimura values (X-axis; K-values from 0 to 50; arbitrary values). Older copies are located on the right side of the graphs while 
rather recent copies are located on the left side.



               
           

                    
                  

                 

                    
                  

                 

Figure S4. Dotplot diagram from LAST revealing the alignments between male-specific scaffolds (vertical) and the rest of the male 
reference genome (horizontal). The red frame indicates continuous alignment between query and hit. Scaffolds on the horizontal axis 
with red arrays (1, 7, 19, 20) represent scaffolds harboring regions that are potentially paralogous to male-specific scaffolds.



 
 

                     
                    

           

Figure S5. Dotplot diagram revealing the natural log value of normalized read counts in testis (horizontal axis) and in ovary (vertical 
axis). Genes that are located in male-related scaffolds are marked in black numbers (‘1’ refers to genes located in male-specific 
scaffolds and ‘2’ refers to the paralogous autosomal region of male-specific scaffolds).



                    
                 

         
Figure S6. Expression levels of genes related to sex differentiation and gametogenesis in arapaima gonads. The expression levels are 
presented as normalized read counts calculated using DESeq2. A) Growth factors and receptors. B) Transcription factors. C) 
Steroidogenic enzymes and receptors. D) Meiosis related genes. E) Others.



       
        

Figure S7. Barplot of the expected and observed number of genes in significantly enriched wiki pathways (adj.pval<0.01) for the 
comparison between male and female secretory organ. Blue indicates the number of expected genes; red indicates the number of 
differentially expressed genes.


